- 6. N. K. Jerne and A. A. Nordin, Science, 140, 405 (1963).
- 7. N. R. Ling, S. Bishop, and R. Jefferis, J. Immunol. Methods, 15, 279 (1977).
- F. Melchers and J. Andersson, Cell, <u>37</u>, 715 (1984).
 B. L. Pike, D. L. Vaux, and G. J. V. Nossal, J. Immunol., <u>2</u>, 554 (1983).
- 10. J. G. Salisbury, J. M. Graham, and C. A. Pasternac, J. Biochem. Biophys. Methods, 1, 341 (1979).
- 11. E. V. Sidorova, M. G. Agadzhanyan (M. G. Agadjanian), A. A. Korukova, and A. E. Gurvich, Immunol. Lett., 3, 21 (1981).
- E. V. Sidorova, \overline{L} . V. Chernomordik, and A. E. Gurvich, Immunochemistry, 12, 397 (1975).
- 13. A. Singer and R. J. Hodes, Annu. Rev. Immunol., 1, 211 (1983).

PROPHYLACTIC EFFECTS OF SODIUM AND LITHIUM HYDROXYBUTYRATE DURING STRESS-INDUCED DEPRESSION OF NORMAL KILLER CELL ACTIVITY IN MICE

G. N. Kryzhanovskii* and G. T. Sukhikh

UDC 612.017.1-064:613.863]. 014.46:615.31:547.473.2

KEY WORDS: sodium hydroxybutyrate; lithium hydroxybutyrate; stress; normal killer

Natural or normal killer (NK) cells play an important role in the maintenance of tissue homeostasis [7], in antitumor and anti-infectious protection [10, 11], and in regulation of a number of important biological processes [9, 11]. NK cell activity can be changed as a result of injury to various parts of the brain and, in particular, the hypothalamus [8], and under the influence of hormones, especially glucocorticoids [6]. It was shown previously that NK cell activity is significantly inhibited during emotional-painful [4] and immobilization stress [5], and that this inhibition can be abolished prophylactically by the cyclic derivative of delta-sleep peptide [3]. A marked prophylactic effect also is produced by sodium hydroxybutyrate (Na-OHBA) [3]. The high antistressor efficacy of a new preparation, namely lithium hydroxybutyrate (Li-OHBA), used for the treatment of various nervous and mental disorders, has recently been established [1, 2]. The aim of this investigation was to compare the prophylactic effect of these two substances — Na-OHBA and Li-OHBA — against stress-induced depression of NK cell activity.

EXPERIMENTAL METHOD

Experiments were carried out on male CBA mice aged 12 weeks. Immobilization stress for 6 h was induced by fixing the animals by their limbs in the supine position. The compounds for testing were given as a single intraperitoneal injection, 30 min before the beginning of exposure to stress, in the following doses: Na-OHBA 50, 100, and 200 mg/kg, Li-OHBA 50 mg/kg, and lithium chloride (LiC1) 10 mg/kg. The animals were divided into five groups: 1) mice receiving an injection of physiological saline (control); 2) stress (immobilization for 6 h); 3) Na-OHBA + stress; 4) Li-OHBA + stress; 5) LiC1 + stress.

The animals were decapitated 24 h after the end of exposure to stress. A suspension of splenocytes, obtained by gentle mechanical destruction of the spleen in a glass homogenizer with Teflon pestle, followed by filtration of the cells through a nylon filter and by washing twice in Eagle's medium, was used as the source of NK cells. The cell concentration was adjusted to 20·106/ml and the cells were transferred to culture medium (RPMI 1640 medium with 10% embryonic calf serum and 1% glutamine). NK cell activity was determined by the test based on release of 51Cr from labeled YAC-1 target cells (TC; a T-cell mouse lymphoma, maintailed by subculture in vitro) For this purpose, to 5.106 YAC-1 cells in a volume of 1 ml of culture fluid was added 100 μCi of Na₂⁵¹CrO₄ (specific activity 300-500 mCi/mg, from Amersham International, England) and incubated on a water bath at 37°C for 60 min. The TC

^{*}Academician of the Academy of Medical Sciences of the USSR.

Institute of General Pathology and Pathological Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 102, No. 11, pp. 592-593, November, 1986. Original article submitted October 24, 1985.

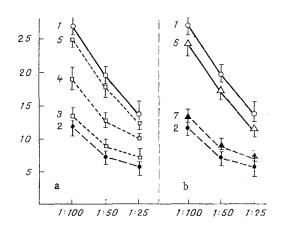


Fig. 1. Prophylactic effect of Na-OHBA (a) and Li-OHBA (b) on stress-induced depression of NK. Abscissa, ratio of EC: TC; ordinate, CI (in %). 1) control; 2) stress; 3, 4, 5) Na-OHBA (in doses of, respectively, 50, 100, and 200 mg/kg) + stress; 6) Li-OHBA (50 mg/kg) + stress; 7) LiCl + stress.

were then carefully washed to remove unbound ^{51}Cr , and their concentration was adjusted to $2\cdot 10^5/\text{ml}$. The TC ($2\cdot 10^4$) in a volume of 100 μl of culture medium were placed in wells of round-bottomed plates with an equal volume of effector cells (EC), with the ratio of EC to TC equal to 1:100, 1:50, and 1:25. The cells were incubated for 4 h at 37°C in an atmosphere with 5% CO₂. The radioactivity of 100 μl of supernatant was measured with a gamma counter. The cytotoxic index (CTI) was calculated by the equation:

CTI = $\frac{\text{Number of counts (experiment - spontaneous release of }^{51}\text{Cr)}}{\text{Number of counts (maximal release - spontaneous release of }^{51}\text{Cr)}} \times 100\%$.

The spontoneous release of 51 Cr was determined in the supernatant from three wells, to which only TC had been added. To determine the maximal release of 51 Cr, instead of EC, 100 μ l of the detergent X-100 was added to the TC. The results were subjected to statistical analysis by Student's test.

EXPERIMENTAL RESULTS

During immobilization for 6 h a significant decrease in NK cell activity took place (Fig. 1). Injection of Na-OHBA in a dose of 50 mg/kg 30 min before immobilization had virtually no prophylactic effect; increasing the dose to 100 mg/kg protected the natural cytotoxicity system against stress, and a dose of 200 mg/kg had optimal activity in this respect, as regards prevention of stress-induced depression of NK cell activity. Li-OHBA, in a dose of 50 mg/kg, caused significant protection of the natural cytotoxicity system against exposure to stress. To examine the role of lithium ions in this protective effect, mice were injected with LiCl before immobilization; this compound had no significant action: the results were indistinguishable from NK cell activity during exposure to stress alone.

Li-OHBA was thus shown to be highly effective in preventing stress-induced depression of NK cell activity in mice. Its protective effect was exhibited in a dose of only one-quarter of that of Na-OHBA (50 and 200 mg/kg, respectively). The results reveal yet another, hitherto unknown, aspect of the action of Li-OHBA. It will be noted that Li-OHBA has a many sided physiological normalizing action and possesses properties on the basis of which it can be classed as a nootropic drug [1].

The results of this investigation broaden the range for experimental use and for future clinical use of preparations which are analogs of natural metabolites of stress-limited systems, with a view to prevention of stress-limiting systems, with a view to prevention of stress-induced damage to different target organs and physiological systems of the body.

LITERATURE CITED

- 1. G. N. Kryzhanovskii, New Data on Pharmacology and Clinical Application of Lithium Salts [in Russian], Moscow (1984), p. 49.
- 2. G. N. Kryzhanovskii and S. V. Magaeva, Stress and Psychopathology [in Russian], Moscow (1983), pp. 13-23.
- 3. F. Z. Meerson, G. T. Sukhikh, B. B. Fuks, et al., Dokl. Akad. Nauk SSSR, <u>274</u>, No. 2, 482 (1984).
- 4. G. T. Sukhikh and F. Z. Meerson, Byull. Eksp. Biol. Med., No. 11, 84 (1983).
- 5. G. T. Sukhikh, F. Z. Meerson, L. V. Van'ko, and B. B. Fuks, Vestn. Akad. Med. Nauk SSSR, No. 11, 16 (1983).

- 6. W. J. Cox, N. J. Halbrook, and H. Fridman, J. Natl. Cancer Inst., <u>71</u>, 973 (1983).
- 7. G. Cudkowicz and P. S. Hochman, Immunol. Rev., 44, 13 (1979).
- 8. G. Forni, M. Bindoni, A. Santoni, et al., Nature, 306, 181 (1983).
- 9. R. H. Goldfarb, T. Timonen, and R. B. Herberman, J. Exp. Med., 159, 935 (1984).
- 10. R. B. Herberman, Surv. Immunol. Res., 3, 214 (1984).
- 11. G. Trinchieri and B. Perussia, Lab. Invest., <u>50</u>, 489 (1984).